Lab 6: Hypothesis testing basics
STAT218
In class we discussed the  test for the hypotheses:

The objective of this lab is to learn to perform the basic calculations involved in this  test “by hand” (without the use of the function that we’ll apply later):
· calculating the test statistic 
· calculating a critical value for a level  test
· calculating a -value
We’ll use the temps dataset to illustrate.
library(tidyverse)
load('data/temps.RData')
head(temps)
  body.temp    sex heart.rate
1      98.8 female         69
2      98.6 female         85
3      98.4   male         68
4      97.2 female         66
5      99.5   male         75
6      97.1   male         82
Checking test assumptions
The  test only makes sense for unimodal populations; otherwise, the population mean isn’t an interpretable parameter.
Beyond that, the test is based on the assumption that either the underlying population distribution is symmetric or the sample size is not too small. “Too small” is relative to just how much funny business you see in the distribution of values: more pronounced skewness or outliers means that more data are required for the test to work well.[footnoteRef:20] [20:  I usually think in the following terms for the -test:
small: 
modest: 
large: 
Unless I’m in the ‘small’ regime, I’m not too worried about skew or outliers. In the ‘modest’ regime, I’m not concerned unless I spot very pronounced skew or outliers. In the ‘large’ regime, I’m really only concerned about (strong) multimodality. Interestingly, in the latter case, the  test still works for multimodal populations, but the population mean isn’t meaningful.] 

Focusing on the mean body temperature as the parameter of interest, we’ll start by checking data summaries of the body.temp variable to assess the properties mentioned above: unimodality and subsequently symmetry and presence of outliers. Here, we have 39 observations, which is neither small nor large but modest. So, we don’t need to be too sensitive unless strong skewness or extreme outliers are present.
# extract temperature variable
bodytemp <- temps$body.temp

# location measures
summary(bodytemp)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  96.40   97.85   98.40   98.41   99.00  100.80 
# histogram
hist(bodytemp, breaks = 10)
[image: lab6-hypothesis_files/figure-docx/checking%20test%20assumptions-1.png]
The histogram suggests a unimodal population, so conceptually the test is sensible; moreover, there’s no indication of strong skewness or outliers, so the test should work just fine.
	[image: /Applications/quarto/share/formats/docx/note.png]  Your turn 1

	Check the heart.rate variable for any skewness or outliers. Assess whether the  test is appropriate, taking account of the sample size.
# extract heartrate variable

# location measures

# histogram


Calculating the test statistic
To test the hypotheses:

We use the test statistic:

In these expressions,  is a placeholder for the hypothesized value of  in any particular problem. To test whether the mean body temperature is 98.6°F, set  and follow the formula:
# store sample mean and standard error
bodytemp.mean <- mean(bodytemp)
bodytemp.mean.se <- sd(bodytemp)/sqrt(length(bodytemp))

# calculate t statistic
bodytemp.tstat <- (bodytemp.mean - 98.6)/bodytemp.mean.se
bodytemp.tstat
[1] -1.328265
Notice that this matches the value obtained in class. The interpretation is:
If mean body temperature were 98.6°F, the estimation error would be -1.328 standard errors.
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	Calculate the test statistic to test the hypothesis that mean heart rate is 75 beats per minute (bpm).
# store sample mean and standard error for heart rate

# calculate t statistic to test whether the mean is 75bpm


Critical values
One way to make a test decision is to determine a threshold  for the absolute value of :
· for any larger , you’ll reject the null hypothesis in favor of the alternative
· for any smaller value , you’ll fail to reject the null hypothesis in favor of the alternative
The threshold is chosen to control the error rate : how often you make the mistake of rejecting  when it’s true. To do this, we use the  quantile of the  model, i.e., the value such that:

We use this specific quantile so that , meaning, if  is true, the proportion of samples for which  exceeds the decision threshold – and thus an error is made – is .
Several examples follow to help you get the hang of determining the correct inputs to obtain critical values based on controlling the error rate at :
# to control error rate at 10%, use this critical value
qt(0.95, df = 38)
[1] 1.685954
# to control error rate at 5%, use this critical value
qt(0.975, df = 38)
[1] 2.024394
# to control error rate at 1%, use this critical value
qt(0.995, df = 38)
[1] 2.711558
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	Calculate the critical value you’d use to control error rate at 20%.
# to control error rate at 20%, use this critical value


The error rate  is also called a “significance level”, leading to the following interpretations:
· at the 20% significance level, we reject the null hypothesis 
· at the 10% significance level, we fail to reject the null hypothesis 
· at the 5% significance level, we fail to reject the null hypothesis 
· at the 1% significance level, we fail to reject the null hypothesis 
You’ll notice that the thresholds get more stringent as the significance level decreases; so we’ll reject for every significance level below 10%.
A 5% significance level is conventional. We’d report the test result as follows:
At the 5% significance level, the data do not provide evidence that mean body temperature differs from 98.6°F.
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	Test the hypothesis that mean heart rate is 75 bpm at the 5% significance level and report the test result following the language above.
# to control error rate at 5%, use this critical value

# decision whether mean heart rate is 75bpm?


-values
A -value quantifies exactly how unusual a particular  statistic is. Technically, it’s the proportion  of samples for which  exceeds the observed value; you can also think of it as the minimum significance level at which the test rejects the null hypothesis.
To calculate a -value, we compute:

In R, the -value for the test of mean body temperature is:
2*pt(abs(bodytemp.tstat), df = 38, lower.tail = F)
[1] 0.1920133
The interpretation of this quantity:
If mean body temperature is in fact 98.6°F then 19.2% of samples would produce a  statistic as large or larger than the observed value.
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	Compute the -value for the test of whether mean heart rate is 75 bpm. Interpret the value in context.
# p value for test of whether mean heart rate is 75bpm


Reporting test results
The conventional style for reporting a test is to include a statement of the outcome, interpreted in context, with supporting statistics provided parenthetically:
The data do not provide evidence that the mean body temperature differs from 98.6°F (T = -1.328 on 38 degrees of freedom, p = 0.192).
	[image: /Applications/quarto/share/formats/docx/note.png]  Your turn 6

	Write a report of your test of whether mean heart rate is 75bpm following the convention above.


Practice problems
1. Use the nhanes dataset to test the hypothesis that the average U.S. adult gets 8 hours of sleep per night.
0. Produce a histogram of the observations and assess, considering the sample size, whether the  test is appropriate based on its shape and the presence or absence of outliers.
0. Calculate a point estimate and standard error for the mean nightly hours of sleep among U.S. adults.
0. Write the hypotheses to test in notation.
0. Calculate the test statistic, critical value for a 5% significance level test, and -value.
0. Report the test result following the conventional style introduced in class.
0. Calculate and interpret a 95% confidence interval for the mean nightly hours of sleep among U.S. adults.
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