asthma | no asthma | |
---|---|---|
female | 49 | 781 |
male | 30 | 769 |
Chi-square tests for independence and association in two-way tables
From a subsample of NHANES data:
asthma | no asthma | |
---|---|---|
female | 49 | 781 |
male | 30 | 769 |
Inference for the difference in proportions:
table(asthma$sex, asthma$asthma) |>
prop.test(alternative = 'two.sided',
conf.level = 0.95,
correct = F)
2-sample test for equality of proportions without continuity correction
data: table(asthma$sex, asthma$asthma)
X-squared = 4.0741, df = 1, p-value = 0.04355
alternative hypothesis: two.sided
95 percent confidence interval:
0.0007323913 0.0422460305
sample estimates:
prop 1 prop 2
0.05903614 0.03754693
Interpretation:
There is moderate evidence that asthma prevalence differs between men and women (Z = 2.108, p = 0.0436). With 95% confidence, the difference in prevalence (F - M) is estimated to be between 0.07% and 4.22%, with a point estimate of 2.15%.
This inference relies on a specific measure of association (difference in prevalence) that we can’t always estimate.
Could we test for association between sex and asthma without relying on a specific measure?
Consider the hypotheses:
\[ \begin{cases} H_0: &\text{asthma}\perp\text{sex} \; &(\text{independence})\\ H_A: &\neg(\text{asthma}\perp\text{sex}) \; &(\text{association}) \end{cases} \]
Consider also the proportions:
asthma | no asthma | total | |
---|---|---|---|
female | 0.03008 | 0.4794 | 0.5095 |
male | 0.01842 | 0.4721 | 0.4905 |
total | 0.0485 | 0.9515 | 1 |
If sex and asthma are independent:
\[ p_{ij} \approx p_i \times p_j \]
For example, we’d expect:
\[ 0.4721 \approx 0.4905 \times 0.9515 \]
In other words:
Expected proportions translate directly to expected counts: \[p_{ij} = p_i \times p_j \quad\Longleftrightarrow\quad n_{ij} = \frac{n_{i\cdot} \times n_{\cdot j}}{n}\]
Actual counts:
O1 | O2 | total | |
---|---|---|---|
G1 | \(n_{11}\) | \(n_{12}\) | \(\color{red}{n_{1\cdot}}\) |
G2 | \(n_{21}\) | \(n_{22}\) | \(\color{orange}{n_{2\cdot}}\) |
total | \(\color{blue}{n_{\cdot 1}}\) | \(\color{green}{n_{\cdot 2}}\) | \(n\) |
Expected counts under independence:
O1 | O2 | total | |
---|---|---|---|
G1 | \(\hat{n}_{11} = \frac{\color{red}{n_{1\cdot}} \color{black}{\times} \color{blue}{n_{\cdot 1}}}{n}\) | \(\hat{n}_{12} = \frac{\color{red}{n_{1\cdot}} \color{black}{\times} \color{green}{n_{\cdot 2}}}{n}\) | \(\color{red}{n_{1\cdot}}\) |
G2 | \(\hat{n}_{21} = \frac{\color{orange}{n_{2\cdot}} \color{black}{\times} \color{blue}{n_{\cdot 1}}}{n}\) | \(\hat{n}_{22} = \frac{\color{orange}{n_{2\cdot}} \color{black}{\times} \color{green}{n_{\cdot 2}}}{n}\) | \(\color{orange}{n_{2\cdot}}\) |
total | \(\color{blue}{n_{\cdot 1}}\) | \(\color{green}{n_{\cdot 2}}\) | \(n\) |
Idea for a test of independence:
Actual counts:
O1 | O2 | total | |
---|---|---|---|
G1 | \(n_{11}\) | \(n_{12}\) | \(\color{red}{n_{1\cdot}}\) |
G2 | \(n_{21}\) | \(n_{22}\) | \(\color{orange}{n_{2\cdot}}\) |
total | \(\color{blue}{n_{\cdot 1}}\) | \(\color{green}{n_{\cdot 2}}\) | \(n\) |
Expected counts under independence:
O1 | O2 | total | |
---|---|---|---|
G1 | \(\hat{n}_{11} = \frac{\color{red}{n_{1\cdot}} \color{black}{\times} \color{blue}{n_{\cdot 1}}}{n}\) | \(\hat{n}_{12} = \frac{\color{red}{n_{1\cdot}} \color{black}{\times} \color{green}{n_{\cdot 2}}}{n}\) | \(\color{red}{n_{1\cdot}}\) |
G2 | \(\hat{n}_{21} = \frac{\color{orange}{n_{2\cdot}} \color{black}{\times} \color{blue}{n_{\cdot 1}}}{n}\) | \(\hat{n}_{22} = \frac{\color{orange}{n_{2\cdot}} \color{black}{\times} \color{green}{n_{\cdot 2}}}{n}\) | \(\color{orange}{n_{2\cdot}}\) |
total | \(\color{blue}{n_{\cdot 1}}\) | \(\color{green}{n_{\cdot 2}}\) | \(n\) |
For the asthma example:
asthma | no asthma | total | |
---|---|---|---|
female | 49 | 781 | 830 |
male | 30 | 769 | 799 |
total | 79 | 1550 | 1629 |
asthma | no asthma | total | |
---|---|---|---|
female | 40.25 | 789.7 | 830 |
male | 38.75 | 760.3 | 799 |
total | 79 | 1550 | 1629 |
A measure of the amount by which actual counts differ from expected counts under independence is the chi (pronounced /ˈkaɪ ) square statistic:
\[ \chi^2 = \sum_{ij} \frac{\left(n_{ij} - \hat{n}_{ij}\right)^2}{\hat{n}_{ij}} \qquad\left(\sum_\text{all cells} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}\right) \]
Cell-wise calculation:
asthma | no asthma | |
---|---|---|
female | \(\frac{(49 - 40.25)^2}{40.25}\) | \(\frac{(781 - 789.7)^2}{789.7}\) |
male | \(\frac{(30 - 38.75)^2}{38.75}\) | \(\frac{(769 - 760.3)^2}{760.3}\) |
Result:
asthma | no asthma | |
---|---|---|
female | 1.901 | 0.09691 |
male | 1.975 | 0.1007 |
Chi-square statistic: \[ \chi^2 = 1.9014 + 1.9751 + 0.0969 + 0.1007 = 4.0741 \]
Under \(H_0\), the \(\chi^2\) statistic has a sampling distribution that can be approximated by a \(\chi^2_1\) model.
The model assumes no expected counts are too small.
\[ \begin{cases} H_0: &\text{asthma}\perp\text{sex} \; &(\text{independence})\\ H_A: &\neg(\text{asthma}\perp\text{sex}) \; &(\text{association}) \end{cases} \]
To determine the test outcome, find the \(p\)-value:
\[ P(\chi^2_1 > \chi^2_\text{obs}) = P(\chi^2_1 > 4.074) = 0.0435 \]
So if asthma and sex were independent, only 4% of random samples would produce a table that deviates from expected counts by more than what we observed.
The R implementation is chisq.test(...)
.
The data provide moderate evidence that asthma prevalence is associated with sex (\(\chi^2\) = 4.074 on 1 degree of freedom, p = 0.0435).
The residual for each cell is defined as a standardized difference between the observed and expected count:
\[r_{ij} = \frac{n_{ij} - \hat{n}_{ij}}{\sqrt{\hat{n}_{ij}}} \]
Examining residuals can indicate the source(s) of an inferred association.
The \(\chi^2\) test for independence is typically applied with Yates’ continuity correction.
This consists in using a modified version of the test statistic:
\[ \chi^2_\text{Yates} = \sum_{ij} \frac{\left(|n_{ij} - \hat{n}_{ij}| - 0.5\right)^2}{\hat{n}_{ij}} \]
Implementation:
# construct table and pass to chisq.test
table(asthma$sex, asthma$asthma) |>
chisq.test(correct = T)
Pearson's Chi-squared test with Yates' continuity correction
data: table(asthma$sex, asthma$asthma)
X-squared = 3.6217, df = 1, p-value = 0.05703
Note the larger \(p\)-value – this changes the conclusion!
Compare the \(\chi^2\) test with inference on the difference in proportions.
Pearson's Chi-squared test with Yates' continuity correction
data: table(asthma$sex, asthma$asthma)
X-squared = 3.6217, df = 1, p-value = 0.05703
# difference in proportions
table(asthma$sex, asthma$asthma) |>
prop.test(alternative = 'two.sided',
conf.level = 0.95,
correct = T)
2-sample test for equality of proportions with continuity correction
data: table(asthma$sex, asthma$asthma)
X-squared = 3.6217, df = 1, p-value = 0.05703
alternative hypothesis: two.sided
95 percent confidence interval:
-0.0004958005 0.0434742223
sample estimates:
prop 1 prop 2
0.05903614 0.03754693
the tests are identical!
the difference in proportions \(\hat{p}_F - \hat{p}_M\) is one specific measure of association
next time we’ll learn about other measures, which also have the same inference attached
FAMuSS data:
CC | CT | TT | total | |
---|---|---|---|---|
African Am | 16 | 6 | 5 | 27 |
Asian | 21 | 18 | 16 | 55 |
Caucasian | 125 | 216 | 126 | 467 |
Hispanic | 4 | 10 | 9 | 23 |
Other | 7 | 11 | 5 | 23 |
total | 173 | 261 | 161 | 595 |
Expected counts:
CC | CT | TT | total | |
---|---|---|---|---|
African Am | 7.85 | 11.84 | 7.31 | 27 |
Asian | 15.99 | 24.13 | 14.88 | 55 |
Caucasian | 135.8 | 204.8 | 126.4 | 467 |
Hispanic | 6.69 | 10.09 | 6.22 | 23 |
Other | 6.69 | 10.09 | 6.22 | 23 |
total | 173 | 261 | 161 | 595 |
In detail:
CC | CT | TT | |
---|---|---|---|
African Am | \(\frac{(16 - 7.85)^2}{7.85}\) | \(\frac{(6 - 11.84)^2}{11.84}\) | \(\frac{(5 - 7.306)^2}{7.306}\) |
Asian | \(\frac{(21 - 15.99)^2}{15.99}\) | \(\frac{(18 - 24.13)^2}{24.13}\) | \(\frac{(16 -14.88)^2}{14.88}\) |
Caucasian | \(\frac{(125 - 135.8)^2}{135.8}\) | \(\frac{(216 - 204.9)^2}{204.9}\) | \(\frac{(126 - 126.4)^2}{126.4}\) |
Hispanic | \(\frac{(4 - 6.687)^2}{6.687}\) | \(\frac{(10 - 10.09)^2}{10.09}\) | \(\frac{(9 - 6.224)^2}{6.224}\) |
Other | \(\frac{(7 - 6.687)^2}{6.687}\) | \(\frac{(11 - 10.09)^2}{10.09}\) | \(\frac{(5 - 6.224)^2}{6.224}\) |
Then:
\[\begin{cases} &\chi^2 = \sum \text{all cells above} = 19.4 \\ &P(\chi^2_{8} > 19.4) = 0.01286 \end{cases} \quad\Longrightarrow\quad \text{reject hypothesis of no association}\]
The implementation is the same as for a \(2\times 2\) table:
The data provide evidence of an association between race and genotype (\(\chi^2\) = 19.4 on 8 degrees of freedom, p = 0.01286).
Which genotype/race combinations are contributing most to this inferred association?
CC | CT | TT | |
---|---|---|---|
African Am | 2.909 | -1.698 | -0.8531 |
Asian | 1.252 | -1.247 | 0.2897 |
Caucasian | -0.9254 | 0.7789 | -0.03244 |
Hispanic | -1.039 | -0.02804 | 1.113 |
Other | 0.1209 | 0.2868 | -0.4905 |
Again look for the largest absolute residuals to explain inferred association.
African American and Asian populations have higher CC and lower CT frequencies than would be expected if genotype were independent of race.
STAT218